ホーム / ニュース

油圧シール

Production

油圧シールは、一般的に、弱い分子引力及び高い弾性特性を有するエラストマー、天然及び合成ポリマーから製造される。油圧シールの2つの主要な供給源は、ゴム及びプラスチック(テフロンのようなPTFE、ポリウレタン)である。シールを製造するために使用される他のエラストマー材料は、ブタジエン、ニトリル、ブチル及びシリコーンを含む。テフロンシールは、粉末フォームからオーブンで焼結されますが、これらと他のエラストマー材料で作られたシールは、通常、押出を介して製造されています。

また、フェルト及びレザーのような非弾性材料からシールを形成することができる。いくつかの特定のタイプの油圧シール(例えば、ボンドシール)は、金属材料(真鍮、青銅、アルミニウム、炭素鋼、およびステンレス鋼を含む)から製造される。シールを作成するために使用される金属材料の全ては、添加された酸化保護及び強度のためにめっき又は溶融してもよい。接着剤のゴム材料と金属との間の接着は、化学結合によって形成される。

Major Types and Operations

Hydraulic seals are most often found in hydraulic cylinders, the mechanical actuators that convert hydraulic pressure (from oil, water, or another pressurized fluid) into unidirectional force for agriculture and forestry vehicles, construction equipment, and similar mechanisms.
Usually, hydraulic seals are located on the cylinder head, on the rod shaft, or in the piston. In these positions, seals keep fluid from leaking past the interface between the rod and head, from leaking to the outside of the cylinder, and from flowing across the piston.

油圧シールは2つの主要なグループに分けられます:静的で、ダイナミックです。

Static seals are typically located in grooves and other confined spaces, where they act as gaskets. In this context, the term gasket refers to a mechanical seal that fills the space between two or more mating surfaces that do not have any motion between them and is held in place by pressure applied by the tightening of bolts. Although static seals vary by number and exact location depending on the specific cylinder structure, all of them serve the purpose of closing gaps between immobile surfaces. Static seals can be further broken down into groups of axial static seals and radial static seals. To achieve a secure seal, axial static seals must be squeezed between their upper and lower surfaces. Radial static seals, on the other hand, accomplish the same thing when they are compressed between their inner and outer surfaces.

Dynamic seals, which are also known as shaft seals, seal gaps between two surfaces that do share relative motion. Types of motion they work in between include reciprocation, oscillation, and rotation.

Reciprocating dynamic seals are seated within glands that hold relative motion. Here they move along an axis in between inner and outer surfaces. Most often, they’re used to power linear actuators, hydraulic cylinders, and pistons in internal combustion engines.

Oscillating seals operate with shafts that rotate using a limited number of turns around its axis. Because of the frequency with which these shafts rotate, oscillating seals are usually made of a relatively hard material and have self-lubricating capabilities.

otary seals are placed where a hydraulic device experiences rotational motion from a housing and a shaft.

Main Types of Hydraulic Seals

The specific operations of a hydraulic seal differ slightly depending on where the seal is located with regard to the hydraulic cylinder. The most common hydraulic seals are piston seals and rod seals, which are both cylinder seals with a flexible lip that rubs against the housing or shaft for improved sealing during linear movement. As such, piston seals and rod seals form the category known as lip seals. These types of seals are most often used to ensure the proper operation of revolving equipment and machinery.

Piston seals specifically work by preventing leakage or fluid flow across the piston. Many piston seals are single-acting piston seals, meaning that they concentrate pressure on only one side of a piston. This concentrated pressure buildup enables the piston to travel the bore of a cylinder and the cylinder to actually move with maximum mechanical effort. As such, (dynamic) piston seals are extremely important to maintain the efficiency of a hydraulic system. Double-acting piston seals are able to concentrate pressure on both sides of a piston, thus driving the ram that the piston is typically attached to. In contrast to the dynamic types of piston seals just described, static piston seals seal the gap between the piston and the piston rod (rather than the piston and the cylinder bore).

Rod seals specifically work by preventing external fluid leakage from the cylinder. They are usually single-acting and often enhanced with a secondary rod seal. Dynamic rod seals function in the gap between the piston rod and the cylinder head while static rod seals close gaps between the cylinder head and the cylinder bore. In addition to containing hydraulic fluid within the cylinder, rod seals help regulate lubrication fluid for the rod, the wiper seal, and the rod seal itself.

油圧シリンダには通常いくつかの一般的な油圧シールがある。ロッドワイパーは、また、スクレイパーまたはワイパーシールとして知られている、シリンダに入ることから汚染物質をブロックします。油圧シリンダの操作性を脅かすいくつかの汚染物質は、汚れ(水分)を含んでいる。ワイパーシールは、これらの汚染物をシリンダーに戻すときに除去します。

Buffer seals enhance the function of the rod seal by providing a “buffer” against excessive internal fluid pressure. They also serve to protect the rod seal from any contaminants that do manage to find their way into the cylinder (such as metal chips).

Guide rings are also known as wear rings since they serve dual purposes of centering the piston and piston rod while guiding them through the cylinder and preempting metal-on-metal contact. Wear rings can be found at both the rod and piston locations within a hydraulic cylinder.
O-rings are unique in this list since they are identified primarily by their shape rather than by their location or specific function. As their name suggests, O-rings are donut-shaped and come in many different materials (e.g. rubber, silicone, fluorocarbon) and sizes (e.g. less than an inch to several meters wide). When these types of seals are mechanically deformed by pressure, they create very effective sealing barriers. Due to their low cost and relative simplicity, O-rings are the most common type of hydraulic seal on the market today.
Beyond these common variations are more specialized types of hydraulic seals.

Oil seals, which are called metric oil seals outside of the USA, are used with hydraulic oil and made with materials that allow them to resist breaking down or malfunctioning in the face of repeated oil exposure. Such materials include polyacrylate, silicone, Teflon, and a number of fluoroelastomers. In addition to preventing leaks, oil seals retain oil and other lubricants for rotary applications.

金属接着シールは、金属製のワッシャーに貼り付けられる方法によって特徴づけられる。

X rings (also known as quad or square rings) are, in essence, enhanced versions of O-rings. Their four-lobed design allows them to achieve up to twice the sealing power of normal O-rings with less mechanical deformation. X rings can be used both as static seals and as dynamic seals.

Applications

油圧シールは油圧システムの効率に非常に重要であるので、それらは広範囲の産業にわたって適用可能である。産業用油圧シールは、航空宇宙製造、農業、自動車製造、化学処理、防衛契約、食品加工、水産物製造、医薬品、医薬品の開発、原子力、パルプ、紙、廃棄物の処理を提供します。

The specific applications of hydraulic seals are as diverse and numerous as they industries they are found in. Hydraulic seals can be found in construction equipment, agricultural machinery, brake devices, clean rooms, conveyors, mixers, presses, valves, and test equipment.
Some hydraulic seals are made for very specific applications. Within the aerospace industry, custom seals such as silicone sealant strips serve to seal various hydraulic components within aircraft systems. Similarly, in the electronic industry, seals such as EMI shielding gaskets serve to prevent unwanted electromagnetic interference in various devices.

我々は、フェノール樹脂複合材料とポリエステル樹脂複合材料を含むガイドリングの専門メーカーです。

あなたがより多くの情報を必要とするならば、PLS接触Vanessa @ kintowe . com